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Abstract 

 
The BTeV experiment was a collider based HEP B-
physics experiment proposed at Fermilab. It included a 
large-scale, high speed trigger/data acquisition (DAQ) 
system, reading data off the detector at 500 Gbytes/sec 
and writing to mass storage at 200 Mbytes/sec. The 
online design was considered to be highly credible in 
terms of technical feasibility, schedule and cost. This 
paper will give an overview of the overall trigger/DAQ 
architecture, highlight some of the challenges, and 
describe the BTeV approach to solving some of the 
technical challenges.  
 
At the time of termination in early 2005, the 
experiment had just passed its baseline review with 
flying colors. Although not fully implemented, many of 
the architecture choices, design, and prototype work 
for the online system (both trigger and DAQ) were well 
on their way to completion. Other large, high-speed 
online systems may have interest in the some of the 
design choices and directions of BTeV, including (a) a 
commodity-based L1 tracking trigger running 
asynchronously at full rate, (b) the hierarchical 
control and fault tolerance in a large real time 
environment, (c) a partitioning model that supports 
offline processing on the online farms during idle 
periods with plans for dynamic load balancing, and (d) 
an independent parallel highway architecture. 
 
1. Introduction 
 

The proposed BTeV detector consisted of 6 
separate subdetectors: pixel, silicon strips, straw tubes, 
rich, emcal and muon with the pixel detector 
dominating the channel count (see Table 1).   

 
Subsystem Channels DCB Subsystems 

Pixel 21M 10 
Strips 128K 2 
Straws 54K  

Rich 154K  
EMCAL 10K  

Muon 37K  

Table 1.  Channel Count 

The overall detector was designed to run with a 7.5  
MHz clock rate delivering beam with a 396nsec (2.5 
MHz) spacing between. Three levels of triggering 
reduced the overall acceptance rate to 2.5 KHz. See 
Table 2 for the data rates at each trigger leve.  
 
 Frequenc

y 
Event 
Size 

Data Rate 

Into L1 2.5 MHz 200 KB 500 GB/sec 
Into L2/L3 50 KHz 250 KB 12.5 

GB/sec 
Into 

archival 
2.5 KHz 80 KB 200 

MB/sec 

Table 2. Event Rates 

 
 

Figure 1 shows the overall architecture of the entire 
BTeV trigger and DAQ.  

 

 
Figure 1. Trigger/DAQ Overview 
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There are several points Figure 1 worth noting. 
First, the detector was unique in that all the data was 
brought off the detector and digitized in subdetector-
specific front end boards. This data was sent via point 
to point copper cable to data combiner boards  (DCBs) 
before being sent to the first level trigger. The data 
combiner board design was common across 
subdetectors (FN). This architecture benefited the 
design in that 1) much of the L1 trigger could be done 
in software which allowed for the commodity 
components described in Mike Wangs talk 2) the 
DCBs provided a single entry point into the 
trigger/DAQ that could be centrally designed and 
maintained reducing the long term support load.  

Secondly, data collected in the DCBs were routed 
to 8 independent, parallel highways. See section for a 
more detailed description of the DCB design. This 
design reduced the overall control overheads on each 
particular highway and grouped data coming out of the 
L1 buffers into larget packets for better Ethernet 
performance. Thirdly, the level 2 and 3 trigger (L2 and 
L3, respectively) decisions were made on the same 
L2/L3 farm. The practical difference is the amount of 
data from a particular event is being evaluated and the 
physics algorithms deployed. Lastly, the baseline of 
the BTeV architecture was to log experiment data to 
large disk farms, ie no tape, using dCache as the 
underlying data storage support software.  
 
4. Highway 

 
    Let’s look at the highway architecture in more 

detail starting with the DCB.  
The data combiner boards are a custom component 

and the first interface between the subdetectors’ front 
end electronics and Two flavors of this board exist – 
one for the fpix board readout (Pixel and Strip 
detectors) and one for everyone else. For the purposes 
of this paper, they can be considered the same with 
only a variation on the configuration of the input ports 
and rates. 

 DCBs are the place in the online architecture that 
splits the detector data into highways – eight parallel 
and independent data streams each processing 1/8th of 
the detector data. The original DCB design routed a 
crossing a time. This was resulting a complex routing 
table algorithm to factor out any periodicity in the 
tevatron. We were investigating the possibility of 
routing a data a turn at a time. This alternative 
approach would simplify the routine, but increase the 
length of time data would live in the DCB exposing it 
to a higher single even upset rate. A given crossing 
will send all of its data to only 1 highway.   

A DCB board contained a commercial CPU and fast 
Ethernet interface for control and low speed data 
readout for diagnostics and commissioning.  

Figure 2 shows the data and control flow in/out of a 
DCB board.  

 

 
Figure 2: DCB Data/Control Flow 

 

The DCBs are received precise clock information from 
the timing system We imagined being able to 
reset/reconfigure “live” on a future crossing. E.g, if a 
catastrophic highway failure, the DCBs could be sent a 
control command to the DCBs to route to 7 highways 
instead of 8 starting at crossing number 6000.  
Data from the DCBs were routed over point to point 
optical links into L1 buffers, another custom 
electronics component. Each L1 Buffer could 
communicate with 24 DCBs (two crates worth). See 
It’s this unit that we will talk about in the partitioning 
section regarding resource reservation.  
For the two detectors that fed into the L1 trigger (pixel 
and muon), data from the DCBs were also read out by 
the segment preprocessors. Calculated data and 
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decisions from the L1 trigger would then fed into 
additional L1 buffers.  

The primary responsibility of an L1 buffer is to buffer 
the detector data for a long enough time to make an L1 
trigger decision. There were 24 L1 buffers per 
highway with 3G of memory each (the smallest we 
imagined would be available). For an aggregate total 
of ~0.5 TBytes of memory, or roughly 1 second of 
data.   Its flow diagram in shown in  Figure 3.  

 
Figure 3. L1 Buffer Data/Control Flow 

 

Data comes into the input FPGA and is stored in a 
dcircular buffer. When a L1accept is received, all data 
for that subevent is copied into a smaller 1GB memory 
area that will be used when transferring accepted 
events to the downstream L2 trigger farm. No special 
information is needed from the ITCH regarding L1 
rejects; the data is simply overwritten in the circular 
buffer.  

This separate L1 trigger accept buffer in memory will 
help in distributing an event to a second L2 worker 
node. This capability might of interest when a specific 
event satisfied the trigger tables in more than one 
partition (see section blah). Details need to be flushed 
out regarding bookkeeping in the L1 buffer to 
understand exactly when an accepted event can be 
overwritten (ie, when it has successfully transferred to 

the primary partition) while allowing it to stay in 
memory as long as possible to allow for parasitic L2 
nodes to transfer additional copies.  

From the L1 buffers, data is sent over a GBit Ethernet  
to the to the L2/L3 trigger farm The L2/L3 trigger farm 
is really running on the same hardware with the 
distinction being which physics algorithm would be 
currently processing the data. It consisted of 
commodity processors was also split into highways.  
Data from one highway could be physically sent to 
another highway, but at a price to performance. Each 
highway consisted of about 90 worker nodes each with 
dual CPUs.  

 To reduce the control overhead and complexity of the 
software, we designed the event building switch with 
enough capacity to send a complete event at L2. Each 
CPU box was referred to as a worker node. Workers 
nodes would declare themselves to a particular 
partition, ie, trigger list (see section on partitioning) 
and notify the ITCH when they were ready for data. 
The ITCH would assign them a particular crossing 
number. All data from that crossing would be sent to 
that worker node.  

Worker nodes themselves were grouped into 
functional units in a highway. Each group was 
controlled by a regional manager consisiting of 12 
worker nodes. A regional manager was responsible for 
configuring its aassociated worker nodes, fanning out 
control commands and collecting statuses, caching 
DMBS data (eg, various versions of the trigger 
algorithm),  and handling regional faults.  
 
3. Fault tolerance 

 
The BTeV trigger performs sophisticated 

computations using  large ensembles of FPGAs, 
embedded processors, and conventional  
microprocessors. This system will have between 5,000 
and 10,000 computing elements and many networks 
and data  switches. The need for fault-tolerant, fault-
adaptive,  and flexible techniques and software to 
manage this huge  
computing platform has been identified as one of the 
most  challenging aspects of this project.  

As a response to this challenge, the Real Time 
Embedded Systems (RTES) project group was formed 
and funded through a 5 year NSF grant.  This research 
group is a collaborative effort between computer 
scientists and high energy physicists. It is researching 
the design and implementation of high-performance, 
heterogenous, reliable, and fault-adaptive real-time 
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systems that are embedded (i.e. are an integral part of 
the hardware they serve). 
 
4. L1 trigger 
 

One particular highlight  of the BTeV design is a 
commodity based L1 tracking trigger running 
asynchronously at full rate. Details 

 
5. Partitioning 

 
Partitioning the detector was defined to be running 

multiple independent data acquisition systems in 
parallel. The value of partitioning and when would 
partition the detector are different depending on the 
phase of the project. I.e., partitioning needs during 
commissiong e.g., testing the subdetectors in parallel 
may be different than when testing new L3 trigger 
algorithms while taking physics quality data. 
Additionally, the BTeV L2/L3 farm contained A LOT 
of processing power. It was an expensive investment to 
be idle during periods of no beam or low luminosity. 
The experiment was relying on using the online farm 
to do offline processing when not required for data 
taking. We planned to use the concept of partitioning 
to support this functionality by having an “offline” 
partition.  

 
Partitioning is strictly a logical concept. One must 

map this onto the physical implementation of the 
experiment. The online DAQ/trigger was constructed 
in 2 stages to match the proposed funding profile with 
roughly 50% of capacity at each stage. The first stage 
consisted of 4 highways and the second stage added 
the next fiscal year. Even within a stage, individual 
highways were commissioned one at a time. The 
logical concept of partitioning needed to support 
running multiple partitions on a single highway (when 
only 1 was constructed) as well as the final system 
with 8 highways 

 
The parallel highway architecture and dynamic 

reloading of DCB routing tables gave BTeV 
overwhelming flexibility in this regard, so much so 
that it became a source of confusion. It’s important to 
note that at the time of BTeV’s cancellation, the 
detailed requirements and design of partitioning were a 
very hot topic among the online staff and hadn’t yet 
reached buy in from the collaboration. What we will 
discuss here are some of the ideas.  

 
First, we imagined the cycle of running a partition 

involved the following steps: 

 
Selecting/reserving [subset of] electronics to be 

read out 
Defining how much L2/L3 trigger processing 

power needed 
Initializing the hardware 
Collecting the data 
Freeing the resources 
 
Original ideas were for a physicist to select the 

strips and straw front end crates, request 50 Mflops of 
L2/L3  nodes for processing, and then let software map 
this out onto a physical implementation. Depending on 
how many nodes might be needed, the layout may be 
to run on a single highway or to route to n highways. If 
a given front end crate needed to send data to multiple 
partitions, its DCB routing tables would be 
dynamically reset to route as necessary. This idea was 
balked at by members of the collaboration believing 
nobody would every have any idea where the events 
were going. An additional constraint on the system 
was that, because of it’s architecture, the L1 trigger 
hardware on a particular highway could NOT be 
partition; however multiple sets of trigger tables could 
be loaded into Global Level 1. It was imagined that a 
given L2/L3 node could belong to one and only one 
partition.  

 
Because of the sheer number of electronics 

involved in the Trigger/DAQ, we were converging on 
the idea of the L1 trigger and active highways always 
being available as a shared resource. A human run 
coordinator would establish the overall online 
configuration for a period of time (day/week/month) 
and coordinate the individual groups taking data 
during this period. This stable configuration period had 
a fixed and predefined set of allowable highways. 
Subdetector groups still had to select the specific 
electronics to read out (in units of L1 buffers). These 
front end crates could be reserved for read/write or 
readonly (ie, can’t be reset or intitialized). It was the 
responsibility of the run coordinator to schedule the 
detector so that users could get write access as needed. 
Partitions could come and go then, adding/removing 
trigger tables as necessary.  

 
For example, say the run coordinator has made 4 

highways available for the next two days. The pixel 
group could reserve the pixel front end electronics and 
associated L1 buffers for read/write, load the pixel 
trigger table. Crossing would be distributed to all 4 
highways. Online software would assign specific 
L2/L3 nodes to this partition as constrained by the run 
coordinator. The silicon strip group could come and 



reserve silicon electronics for read/write and pixel for 
read only and load a second set of trigger tables. 
Again, the software would assign L2/L3 worker nodes 
specifically to this partition. If a given crossing passed 
the L1 trigger for both partitions, it could be routed to 
worker nodes in both partitions or split between the 
two partitions in a predefined scalar. This was still also 
being discussed in the collaboration.  

Partioning became an obvious solution when 
discussing the problem of how to utilize spare online 
cycles for offline. The pure Computer Scientists 
involved in RTeS promoted real time scheduling on 
the worker nodes to squeak out the maximum CPU 
utilization, but they were outweighed by the opinion 
that a particular worker node should be single tasking 
for a more simplistic and manageable from an 
operational standpoint.  

Nodes could manually by moved between online 
and offline partitions, but we also envisioned an 
automatic shift toward offline as luminosity in the 
tevatron dropped. An overall luminosity profile would 
be loaded at the start of a run. As system monitoring 
tools detected lower utilization in the worker nodes, 
they would migrate nodes into the offline partition.  

 
 

5. Conclusions 
Thanks to the efforts of many talented people in the 
collaboration and at the lab as well as extremely 
helpful comments from the many reviews, the DAQ 
and trigger groups in BTeV were able to develop a 
highly credible online architecture. This architecture 
was believable in terms of cost and schedule with well 
understood, and mimimal risks.  
Key elements in the success of the design were 
developing an architecture which maximized the 
number of commodity components (switching fabric, 
trigger farms) and on minimizing the variability 
between custom boards, i.e, the DCBs were common 
across all detectors.  
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